

tribology surface engineering

SURFACE ENGINEERING OF STAINLESS STEELS

André Paulo Tschiptschin

Metallurgical and Materials Engineering Department University of São Paulo

IDD BRANA

- Surface properties of these materials may be improved by thermochemical and plasma assisted treatments, to reach better performance in highly stressed tribological systems.
- Thermochemical and plasma assisted surface treatments have been proposed to improve tribological properties of these CRA.
 - HTGN \Rightarrow High Temperature Gas Nitriding
 - LTGN \Rightarrow Low Temperature Gas Nitriding
 - LTPN \Rightarrow Low Temperature Plasma Nitriding
 - LTPC \Rightarrow Low Temperature Plasma Carburizing
 - LTPNC \Rightarrow Low Temperature Plasma Nitrocarburizing

- The common characteristic of these surface treatments is the introduction of nitrogen or carbon in solid solution by diffusional processes, increasing hardness and developing compressive residual stresses, as well.
- Increasing carbon or nitrogen contents in solid solution in austenite, up to and also beyond the solid solubility limit, increases steadily the hardness of these alloys.
- Chromium nitrides or chromium carbides precipitation should be avoided in order to avoid sensitization and preserve corrosion resistance.
- High Temperature Gas Nitriding allows obtaining equilibrium nitrogen contents, up to 1.1 wt.%, in solid solution in austenite, depending on SS chemical composition, N₂ potential in the nitriding atmosphere, nitriding temperature and pressure.

Improve surface hardness without loss of

corrosion resistance

Cr₂₃C₆ precipitation harms the corrosion resistance due to Chromium depletion (sensitization)

 Solid-state nitrogen alloying technique, consisting of exposing SS to a N₂-containing gas atmosphere in the range 1000-1200°C.

Phase fields and nitrogen iso-concentration lines for a Fe-16.2 wt% Cr alloy

THEORYMAN

 Atomic nitrogen is interstitially absorbed at the surface of the steel and then diffuses into the near surface region, promoting hardening and improving corrosion resistance.

N effect on Pitting Potential

• Change in pitting potential of 18 wt% Cr austenitic stainless steels in dilute chloride solution [Speidel, 1991]

- Stainless Steels:
 - HTGN Duplex SS \Rightarrow fully austenitic layer \Uparrow % N
 - HTGN Dual phase (α + M) \Rightarrow fully martensitic layer \Uparrow % N
 - HTGN martensitic SS \Rightarrow fully martensitic layer \uparrow % N
 - HTGN austenitic SS \Rightarrow fully austenitic layer \Uparrow % N
- Properties:
 - High Hardness (martensitic) \Rightarrow Roller bearings and tools.
 - Wear resistance (Cavitation-erosion, Erosion-corrosion) \Rightarrow pump rotors slurry environments.
 - Corrosion resistance (generalized and localized) \Rightarrow surgical implants, biomedical application, retaining rings, etc.

- When UNS S31803 duplex stainless steel is heated at 1200°C for HTGN the structure becomes completely ferritic.
- During nitriding ferrite transforms to Widmanstätten austenite.
- At the end a fully austenitic case is achieved

Austenite formation during HTGN

UNS S31803 duplex stainless steel during HTGN treatment at 1150°C

Hardening of UNS31803 after HTGN

Hardness of UNS S31803 DSS after HTGN treatment at 1150°C

THIODRRMAT

GARZON, C.G.; TSCHIPTSCHIN, A.P; – PI05048850, "Ciclo de tratamento que inibe o crescimento de grão e a formação de nitretos durante recozimento em alta temperatura de aços inoxidáveis duplex sob atmosfera de nitrogênio", INPI.

Non isobaric treatment for grain refinement

GARZON, C.G.; TSCHIPTSCHIN, A.P; – PI05048850, "Ciclo de tratamento que inibe o crescimento de grão e a formação de nitretos durante recozimento em alta temperatura de aços inoxidáveis duplex sob atmosfera de nitrogênio", INPI.

TIDDRRMA

IMPROVEMENT OF SURFACE HARDNESS WITHOUT LOSS OF CORROSION RESISTANCE

Kolsterising

B. H. Kolster, VDI-Berichte, 506 (1983), 107-113

A "new phase" identified by Ichii et al., the so-called S phase. Peaks of a cubic phase **shifted (S)** to the left.

- ✓ metastable,
- ✓ precipitate free,
- ✓ interstitial supersaturated,
- ✓ superhard 'expanded austenite',
- ✓ form at low temperatures
- ✓ introduction of interstitials (such as N and C, or both) into an FCC structured substrate

K. Ichii, K. Fujimura and T. Takase: Technol. Rep. Kansai Univ., 1986, 27, 135–144

Improve surface hardness without loss of corrosion resistance – Interstitial Hardening

Paths A and C avoid $Cr_{23}C_6$ precipitation, that harms the corrosion resistance

HTIH and LTIH allows hardening without losing corrosion resistance

C solubility in 316L stainless steel

A = Pure iron

B = 316 SS with Cr_7C_3 formation

C = 316 SS without Cr_7C_3 formation

- 1) Depassivation by Halide containing atmospheres: NF₃ or HCI Low Temperature Gas Carburizing (patent by Swagelok).
- 2) Activation of the surface of the part \Rightarrow Ni metal to prevent repassivation \Rightarrow catalytic NH₃ gas decomposition (Patent by Somers US 7431778 B2).
- Activation of the surface by sputtering in H₂, under a high applied voltage and low pressure Patent 018090023300 INPI – by Tschiptschin .

Surface Activation

- 1) Depassivation by Halide containing atmospheres: NF₃ or HCI Low Temperature Gas Carburizing (patent by Swagelok).
- 2) Activation of the surface of the part \Rightarrow Ni metal to prevent repassivation \Rightarrow catalytic NH₃ gas decomposition (Patent by Somers US 7431778 B2).
- Activation of the surface by sputtering in H₂, under applied voltage and low pressure (Patent 018090023300 INPI by Tschiptschin).

Low Temperature Nitriding, Carburizing and Nitrocarburizing

LTPN

LTGC

LTGNC

- ✓ metastable,
- ✓ precipitate free,
- ✓ interstitial supersaturated,
- ✓ superhard 'expanded austenite',
- ✓ form at low temperatures
- ✓ Introduction of interstitials (such as N and C, or both) into an FCC structured substrate

T. L. Christiansen; M.A.J. Somers – Advanced Materials and Processes, nov-dec (2013),

Low Temperature Gas Carburizing

THIODRRMAT

THIODRRMAT

Low Temperature Gas Carburizing

Swagelok

Stainless Steel Fittings

Low-temperature Gas Carburizing

Swagelok development:

- The hardened back-ferrule drives onto the surface of super duplex tubing
- Pressure enough to ensure predictable, leak tight installation and performance at working.

C Expanded Austenite

THIODRAMAT

Low Temperature Gas Carburizing

N Expanded Austenite

Surface hardening of stainless steel

□ Surface hardening of stainless steel ball valves

Properties	(γ _N)	(γ _c)	
Formation temperature, °C	300–450	400-550	
Surface interstitial content, at%	20-30 (<30)	5–10 (<15)	
S-phase layer thickness, µm	10-20 (<30)	20-40 (<50)	
Surface hardness, HV0.05	1300–1500	800-1000	
Hardness depth distribution	Abrupt change	Gradual change	
Load bearing capacity	Low	High	
Ductility/toughness	Poor	Good	
Residual stresses	High but shallow	Low but deep	
Fatigue properties	Low	High	
Pitting corrosion resistance	Very good	Good	
Dry sliding wear resistance	Very good	Good	
Corrosion wear in saline solution	Very good	Good	
Fretting wear in Ringer's solution	Very good	Good	
Erosion corrosion in silica/saline slurry	Very good	Good	
Thermal stability	Low	High	
Biocompatibility	Good	Good	

Carbon X Nitrogen Expanded Austenite

□ Maximum hardness ~1200 HV

- Depassivation by H₂ sputtering
 - Ionization of gas molecules and atoms
 - Acceleration of ions towards the cathode
 - Generation and recombination of chemical compounds or radicals , in particular Fe/N ions
 - Condensation of FeN molecules in the cathode surface with release of nitrogen to the surface
 - Penetration of ions in the surface of the part
 - Plasma nitriding (H2+N2) least affects the surface finish of the product.
 - Plasma nitriding has a higher surface hardness and maintains your material's core properties due to the lower processing temperatures associated with plasma nitriding
 - Plasma nitriding is environmentally friendly. Plasma nitriding uses non-toxic precisely controlled gas mixtures.

- Disadvantages
 - Rings of different colors are formed when stainless steel parts are pulsed DC plasma nitrided.
 - Distortions of the electric field around the corners and edges,
 - Shape of plasma sheath, which is connected to the shape of samples, determines the ion flux distribution
 - Affects the uniformity, hardness and surface phases of coating.

DC Plasma X Active Screen Plasma Nitriding

• Plasma nitriding reactions occur directly on the surface of the part

Direct Current Plasma Nitriding

- Higher N potential
- Influence of the part geometry on the nitrogen potential and nitrogen flux
- Edge effect

 Plasma nitriding reactions occur on the surface of the screen

Active Screen Plasma Nitriding

- Lower N potential
- More homogeneous nitrogen flux throughout the surface
- More even nitrided layer

Duplex Treatment (HTGN + LTPN)

(a) HTGN of duplex stainless steel

(b) High Nitrogen layer

(c) Expanded austenite layer

MESA, D.H ; PINEDO, C.E.; TSCHIPTSCHIN, A. P - Improvement of the cavitation erosion resistance of UNS S31803 stainless steel by duplex treatment – Surface and Coatings Technology, 205 (2010)1552-1556

Cavitation Erosion Resistance of Duplex Treated UNS S31803

TIDDRRMAT

MESA, D.H ; PINEDO, C.E.; TSCHIPTSCHIN, A. P - Improvement of the cavitation erosion resistance of UNS S31803 stainless steel by duplex treatment – Surface and Coatings Technology, 205 (2010)1552-1556

The mechanical support given by HTGN, improves the performance of the LTGN layer

Active Screen Plasma Nitriding

Plasma removed from the parts' surface

Plasma nitriding reactions occur on the surface of the screen

- Martensitic stainless steels are used for manufacturing hydraulic components affected by cavitation erosion.
- The introduction of nitrogen atoms using thermochemical treatments has been proved to be an effective way to enhance the cavitation erosion resistance
- Low temperature nitriding of martensitic stainless steel leads to formation of expanded martensite α 'N, (BCC expanded phase)

BCC expanded martensite $\alpha'N$

• Low temperature nitriding of martensitic stainless steel leads to formation of expanded martensite $\alpha'N$, (BCC expanded phase).

DC Plasma Nitriding 400°C, 20 h

 Fe_4N Nitrides + $\alpha'N$ (BCC expanded phase)

ASPN nitriding 400°C, 20 h

 $\alpha^\prime \text{N}\text{,}$ (BCC expanded phase).

• Low temperature nitriding of martensitic stainless steel leads to formation of expanded martensite $\alpha'N$, (BCC expanded phase).

DC Plasma Nitriding 400°C, 20 h

ASPN nitriding 400°C, 20 h

 Fe_4N , Fe_3N Nitrides + $\alpha'N$ (BCC expanded phase)

 α 'N, (BCC expanded phase).

• Low temperature nitriding of martensitic stainless steel leads to formation of expanded martensite $\alpha'N$, (BCC expanded phase)

Fe₄N Nitrides + α 'N (BCC expanded phase)

 α' N, (BCC expanded phase).

• Cavitation erosion resistance

Fe₄N Nitrides + α 'N (BCC expanded phase) Erosion rates decreased from 1,2 to 0,36 mg/h α 'N, (BCC expanded phase) Erosion rates decreased 27 times

Nanoindentation

Specimen	H (GPa)	h _{max} (nm)	h _f (nm)	W _e (%)
Non-nitrided	4.7	234.3	197.7	15.7
	±0.3	±5.9	±6.6	±0.9
Nitrided	13.7	148.4	81.4	45.1
	±0.75	±3.8	±4.2	±1.6

loading/unloading rate: 1400 $\mu\text{N/s}$ maximum load: 7000 μN

Mechanical Properties of Expanded Martensite (ASPN)

Mechanical Properties of Expanded Martensite (ASPN)

Mechanical Properties of Expanded Martensite (ASPN)

JFES

THIODRRMAT

Figure 12: Relationship between maximum pressure p_{\max} , ratio of elastic to total deformation energy $\frac{W_{el}}{W_{tot}}$, maximum plastic strain $\varepsilon_{\text{pl,max}}$, and the ratio of pit width to pit depth $\frac{b}{h}$

F. Pohl, S. Mottyll, R. Skoda, S. Huth - Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials – to be published in Wear, 2015.

FEM - Calculated plastic strain

Figure 13: Calculated plastic strain distribution of a measured pit in copper with the profile of plastic strain strain along the axis of symmetry

F. Pohl, S. Mottyll, R. Skoda, S. Huth - Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials – to be published in Wear, 2015.

1

Figure 14: Strain energy of elastic and plastic deformation during loading and unloading

F. Pohl, S. Mottyll, R. Skoda, S. Huth - Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials – to be published in Wear, 2015.

THIODRRMAT

Figure 15: Summary of the relationships between the pit geometry (b and h) and the maximum pressure p_{\max} , the ratio of elastic to total deformation energy $\frac{W_{\rm el}}{W_{\rm tot}}$, and the maximum plastic strain $\varepsilon_{\rm pl,max}$

THIODRRMAT

F. Pohl, S. Mottyll, R. Skoda, S. Huth - Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials – to be published in Wear, 2015.

Instrumented Linear Scratch Tests

- Abrasive wear due to scratching using a diamond tip
- Measuring COF Coefficient of friction

N Expanded Martensite

Duplex Coating of Martensitic 440B Stainless Steel

- PVD coatings has been increasingly employed on piston rings:
 - o Excellent wear resistance
 - o Small wear of cylinder

IFES

• High scuffing resistance and low friction coefficient.

Surface Patterning of Stainless Steel

- Expansion of austenite occurs horizontally and vertically
- Vertical expansion is responsible for the patterning

T. Czerwiec, G. Marcos, T. Thiriet, Y. Guo, T. Belmonte - IOP Conf. Series: Materials Science and Engineering 5 (2009) 012012

Surface Patterning of Stainless Steel

- Expansion of austenite occurs horizontally and vertically
- Vertical expansion is responsible for the patterning

Microtexturing SS Tools by Inkjet Printing

Nurturing Engineers Who Learn from Society and Contribute to Society

T. Katoh, T. Aizawa, T. - Manufacturing Rev. 2 (2015) 2, 2-7

Microtexturing SS Tools by Inkjet Printing

SHIBAURA INSTITUTE OF TECHNOLOGY
Nurturing Engineers Who Learn from Society and Contribute to Society

T. Katoh , T. Aizawa, T. - Manufacturing Rev. 2 (2015) 2, 2-7

- The tribological behavior of stainless steels can be improved by using plasma assisted thermochemical treatments.
- Depending on the contact stresses the duplex and combined treatments HTGN, LTPN and PVD—TiN may be used to obtain a better combination of surface properties.
- Low temperature plasma treatments lead to the formation of supersaturated metastable phases on the surface (expanded austenite, expanded ferrite and expanded martensite) increasing hardness, wear resistance and cavitation-erosion resistance.
- The expanded phases show very low coefficient of friction when scratched with a diamond tip during instrumented scratch testing.
- Microtexturing and Surface Patterning can be accomplished by plasma assisted surface treatment.

- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Prof. Hanshan Dong University of Birmingham Surface Engineering Group
- Dr. Xiao-Ying Li University of Birmingham Surface Engineering Group
- Carlos Eduardo Pinedo Heat Tech Technologies for Heat Treatment and Surface Engineering
- Pró-Reitoria de Pesquisa da USP
- Luis Armando Espitia
- Luis Bernardo Varela
- Fernando Luis Sato
- Dairo Hernan Mesa
- Sharys Varela
- Abel André Cândido Recco
- Diana Maria López
- Carlos Mario Garzón
- Claudia Patrícia Ossa
- Alejandro Toro
- Juan Manuel Vélez

FEM modeling of cavitation damage

THIDDRRMAT

Figure 12: Relationship between maximum pressure p_{\max} , ratio of elastic to total deformation energy $\frac{W_{el}}{W_{tot}}$, maximum plastic strain $\varepsilon_{\text{pl,max}}$, and the ratio of pit width to pit depth $\frac{b}{h}$

F. Pohl, S. Mottyll, R. Skoda, S. Huth - Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials – to be published in Wear, 2015.

FEM - Calculated plastic strain

Figure 13: Calculated plastic strain distribution of a measured pit in copper with the profile of plastic strain strain along the axis of symmetry

F. Pohl, S. Mottyll, R. Skoda, S. Huth - Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials – to be published in Wear, 2015.

THIDDRRMAT

1

Figure 14: Strain energy of elastic and plastic deformation during loading and unloading

F. Pohl, S. Mottyll, R. Skoda, S. Huth - Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials – to be published in Wear, 2015.

THIODRRMAT

Figure 15: Summary of the relationships between the pit geometry (b and h) and the maximum pressure p_{\max} , the ratio of elastic to total deformation energy $\frac{W_{\rm el}}{W_{\rm tot}}$, and the maximum plastic strain $\varepsilon_{\rm pl,max}$

THIODRRMAT

F. Pohl, S. Mottyll, R. Skoda, S. Huth - Evaluation of cavitation-induced pressure loads applied to material surfaces by finite-element assisted pit analysis and numerical investigation of the elasto-plastic deformation of metallic materials – to be published in Wear, 2015.