### **TRIBOLOGICAL PROPERTIES OF SINTERED AUSTENITIC** Atrito Desgaste **STAINLESS STEELS**

*Lubrificação* 

V.04

Effects of boron, yttria, and other additives

Mogueca Tribológica

# María Cristina Moré Farias

Programa de Pós-Graduação em Engenharia e Ciência dos Materiais



Universidade de Caxias do Sul



#### **Profa. María Cristina Moré Farias**

- \* Graduação Eng. Mecânica ISPJAE Cuba
- \* Mestrado Eng. Mecânica USP
- \* Doutorado Eng. Mecânica USP
- \* Pós-Doutorado Eng. Mecânica USP
- Docente PPGMAT/UCS (2010 atual)

#### **Principais Pesquisas**

- Desenvolvimento e caracterização tribológica materiais sinterizados (metais, cerâmicas) com diferentes aditivos (ativadores, reforços, lubrificantes sólidos)
- Tribologia de materiais de fricção utilizados em freios automotivos

✤ Determinação de propriedades mecânicas de superfícies empregando indentação instrumentada

 Desenvolvimento de pavimentos cerâmicos base argila com adição de resíduos de rochas





### **PPGMAT - UCS**

Programa de Pós-Graduação em Engenharia e Ciência dos Materiais Universidade de Caxias do Sul

# Docentes 2019

Alexandre Fassini Michels Carlos Alejandro Figueroa César Aguzzoli Cláudio Antônio Perottoni Eliena Jonko Birriel ladna Catafesta Janaina da Silva Crespo - Coordenadora Ianete Eunice Zorzi Larissa Nardini Carli Marcelo Giovanela Márcio Ronaldo Farias Soares Maria Cristina Moré Farias Mariana Roesch Ely Otávio Bianchi Robinson Carlos Dudley Cruz Sidnei Moura e Silva Thiago Barcellos da Silva



#### Professores PPGMAT 2019

https://www.ucs.br/site/pos-graduacao/formacao-stricto-sensu/materiais/







# **PPGMAT - UCS**

# NÚMEROS

Corpo discente 2019: 17 alunos de mestrado e 26 de doutorado, além de estudantes de graduação realizando trabalhos de iniciação científica.

> Corpo docente permanente: 75% têm bolsa CNPq de Produtividade em Pesquisa, que distingue os pesquisadores com alta produtividade.

- 129 mestres formados.
- 24 doutores formados.
  - 45 patentes.

• 570 artigos.

https://www.ucs.br/site/pos-graduacao/formacao-stricto-sensu/materiais/



Spin-off 3%

Nossos

Dados até agosto de 2019

Egressos

Pós-doutorado 4%

Doutorado 8%

-Docente IES 26%

mcmfarias@ucs.br



Outros 7%

-Setor Privado 52%

# PPGMAT - UCS LINHA DO TEMPO





• Prof. Israel J. R. Baumvol é convidado a criar um Programa de Pós-Graduação em Materiais

2004 • Início das atividades do PPGMAT com 85 inscritos para 15 vagas

2005 • Primeira defesa de Mestrado, pela tecnóloga em Polímeros Maira Finkler

2006 · Convênio UCS-SIMECS para complementar recursos públicos para laboratório do PPGMAT

Inauguração do Laboratório de Engenharia de Superfícies e Tratamentos
 Térmicos (LESTT)

Início do Doutorado Interinstitucional PGCIMAT/UFRGS - PPGMAT/UCS
 Inauguração do Laboratório de Caracterização de Materiais I

2008 : O PPGMAT compõe a recém criada "Área de Materiais" da CAPES Inauguração do Núcleo de Pesquisas em Geoquímica (NupGeo)

- Criação do Instituto Nacional de Engenharia de Superfícies (INES)
- Convênio UCS-CIC para complementar recursos públicos ao laboratório do INES

 Início das atividades do Laboratório de Pesquisa em Química dos Materiais (LPQM)

https://www.ucs.br/site/pos-graduacao/formacao-stricto-sensu/materiais/





mcmfarias@ucs.br

Instituto Nacional de Engenharia de Superfícies



2007

# **PPGMAT - UCS**



https://www.ucs.br/site/pos-graduacao/formacao-stricto-sensu/materiais/



mcmfarias@ucs.br



Moqueca Tribológica V.04, Vitória - ES, 2020

# Sintered austenitic stainless steels





- Stainless steels have been successfully fabricated through different powder metallurgy (P/M) routes
- Austenitic (ASS) and ferritic (FSS) stainless steels are the most widely produced by P/M
- ASS exhibit a good combination of corrosion and oxidation resistance, associated with good mechanical properties
- Interest in P/M SS for general use (biomedical, dental, chemical, nuclear, automotive, aerospace) has increased



# Sintered austenitic stainless steels

- P/M ASS present lower mechanical resistance than the wrought or cast steels, due to their intrinsic porosity
- Applications of ASS are also limited by their relative softness and susceptibility to wear (adhesive, abrasive, fatigue) and wear-corrosion
- Three routes have been implemented to improve density and reach a good combination of mechanical, wear and corrosion properties of P/M SS
  - i. surface modification of the sintered body by plasma-assisted surface treatments
  - ii. modification of parameters in compaction and sintering steps
  - iii. addition of certain elements (sintering enhancers or activators and reinforcements)





# **Activated sintering**

- Activated sintering refers to any special process which results in an increased sintering rate or densification rate, i.e.,
  - promotes lowering sintering temperature; shorten sintering time or improve sintered properties

#### • Sintering enhancement approaches

- Solid state activated sintering
- Liquid phase sintering
- Sintering activators
  - small particles, frequently used in low concentrations
  - promote effective changes in interfacial energy, grain boundary mobility, reduction of void fraction, diffusion rates, and phase stability

R. M. German & B. H. Rabin (1985) Powder Metallurgy, 28:1, 7-12.





9

# **Possible routes to alter sintering rate**

- Change process conditions (particle size or temperature)
- Change defects configuration by pretreating powders (alloying or deformation)
- Application of external force (Ex. HP, HIP)
- Promote the formation of second phases that act as preferential diffusion paths
  - Solid state activated sintering
  - Liquid phase sintering

R. M. German & B. H. Rabin (1985) Powder Metallurgy, 28:1, 7-12.





# Liquid phase sintering

- In the case of liquid-phase sintering, densification is achieved through the formation of a system with high wettability between the matrix and the liquid phase
  - improves the mass transfer rate
  - Increase the sintering rate by decreasing sintering temperature or reducing sintering time
- Liquid phase can be obtained by
  - addition of low melting temperature elements

□ Cu, P, Si, Cu-10Sn, Tin, Babbitt

dissociation of a mixture containing the base material and additive powders in a new phase with eutectic composition

□ B, Cr<sub>2</sub>B, FeB, Fe<sub>2</sub>B

R. M. German & K. A. D'Angelo (1984), International Metals Reviews, 29:1, 249-272.





#### Solubility: S<sub>B</sub>/S<sub>A</sub> > 1

- Favorable effect in diffusion rate
  - diffusive flux in additive layer
  - favorable change in bonding free energy
  - good wetting and adhesion of additive to base material



Idealized phase diagram showing characteristics most favorable for enhanced sintering

R. M. German & K. A. D'Angelo (1984), International Metals Reviews, 29:1, 249-272.







#### Segregation: T<sub>mB</sub>/T<sub>LP</sub> > 1

- Segregation of an equilibrium second phase at interparticle site
  - decreasing Decreasing liquidus and liquidus and solidus as A is solidus increased large melting examples: L+β point difference liquid phase activated  $\alpha$  $\alpha + \beta$ low solubility high solubility additive base

R. M. German & B. H. Rabin (1985) Powder Metallurgy, 28:1, 7-12.



#### Diffusion: D<sub>E</sub>/D<sub>B</sub> > 1

- D<sub>E</sub>: diffusivity of B in A layer
- D<sub>B</sub>: selfdiffusivity of B
- additive flows to the interparticle boundary
- rapid diffusion along the sinter bond
- Iow liquid temperature for A
  - Iow activation energy
  - high diffusivity



R. M. German & B. H. Rabin (1985) Powder Metallurgy, 28:1, 7-12.







### **Sintering additives for ferrous powders**

- Sintering activators
  - C, B, P,
  - Cu, Sn, S, Ni, Mn, Co, Ti
- Other additives
  - Al<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub>
  - B<sub>2</sub>Cr, Cr<sub>2</sub>Al, TiCr<sub>2</sub>, TiAl
  - VC, SiC, TiC
  - TiB<sub>2</sub>

R. M. German & K. A. D'Angelo (1984), International Metals Reviews, 29:1, 249-272. Oke, S.R., Ige, O.O., Falodun, O.E. et al. (2019) Int J Adv Manuf Technol, 102, 3271–3290.





## **Other sintering additives**

- In combination with solid state or liquid phase sintering activators, other elements have been added to
  - enhance mechanical properties
  - improve corrosion and high-temperature oxidation resistance
  - reduce friction and wear
- Low matrix-additive interaction makes necessary the use sintering activators
  - Solid lubricants (h-BN, MoS<sub>2</sub>)
  - Reinforcement
    - □ Oxide ceramics (Al<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub>) → mechanical properties, wear and corrosion resistance
    - □ Intermetallics ( $Cr_2Al$ , Ti $Cr_2$ , TiAl) → mechanical, corrosion and wear properties
    - $\square$  Carbides (VC, SiC, TiC)  $\rightarrow$  mechanical properties, wear resistance
    - □ Borides (TiB<sub>2</sub>) → mechanical and tribological properties
- The improvement of mechanical, corrosion and tribological properties of the composites depends on the amount, size, shape and distribution of the dispersed second phase particles, and P/M parameters

Oke, S.R., Ige, O.O., Falodun, O.E. et al. (2019) Int J Adv Manuf Technol, 102, 3271-3290.





### **Tribology properties of sintered austenitic stainless steels**

- The literature on the tribological properties of P/M austenitic stainless steels and theirs composites is scarce
- There exist some researches on dry sliding behavior of sintered austenitic stainless steels added with
  - Metals or metallic alloys: B, Cu-Sn
  - Borides: TiB<sub>2</sub>
  - Nitrides: BN
  - Oxides: Al<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub>, YAG
  - Carbides: SiC, VC
  - Intermetallics: TiCr<sub>2</sub>, Cr<sub>2</sub>Al, Ni<sub>3</sub>Al, Fe<sub>3</sub>Al





# Metal matrix composites (MMC)





Ref: German et al Review: liquid phase sintering. J Mater Sci (2009) 44:1–39

#### Powder metallurgy Secondary particle additives **Final Properties** Effect of sintering parameters as Sintering mechanism temperature on the sintered phase Higher hardness and density transformation **Oxidation resistance** Liquid phase sintering Importance of the particles: size, shape • Solid phase sintering Wear resistance and volume fraction Effect of mixture of different materials





## Sintered Austenitic Stainless Steel

#### Precedents

- D. Uzunsoy, Investigation of dry sliding wear properties of boron doped powder metallurgy 316L stainless steel, Mater. Des. 31 (8) (2010) 3896–3900.
- M. Vardavoulias, M. Jeandin, F. Velasco, J.M. Torralba, Dry sliding wear mechanism for P/M austenitic stainless steels and their composites containing Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub> particles, **Tribol. Int.** 29 (6) (1996) 499–506.
- A. Bautista, F. Velasco, J. Abenojar, *Oxidation resistance of sintered stainless steels: effect of yttria additions*, *Corros. Sci.* 45 (2003) 1343–1354.





### Dry sliding wear of boron doped P/M ASS (Uzunsoy, 2010)





- Boron additions decrease plastic deformation and wear rate in sliding contact
- Hardness and porosity level have a significant effect on the wear behavior of P/M ASS





# Sliding wear mechanism for P/M ASS and their composites (Vardavoulias et al., 1996)

| Specimen                               | Friction coefficient | Disc specific wear rate<br>(×10 <sup>-13</sup> m <sup>2</sup> N <sup>-1</sup> ) |
|----------------------------------------|----------------------|---------------------------------------------------------------------------------|
| 304L                                   | 0.61                 | 7                                                                               |
| $304L+B_2Cr+Y_2O_3$                    | 0.62-0.65            | 5.7                                                                             |
| 304L+B2Cr+Al2O3                        | 0.8                  | 2.1                                                                             |
| 304L+BN+Y <sub>2</sub> O <sub>3</sub>  | 0.65-0.68            | 9.4                                                                             |
| 304L+BN+Al <sub>2</sub> O <sub>3</sub> | 0.6-0.7              | 6.1                                                                             |
| 316L                                   | 0.58                 | 6.1                                                                             |
| 316L+B2Cr+Y2O                          | 0.6-0.65             | 3.5                                                                             |
| $316L + B_2Cr + A\overline{I}_2O_3$    | 0.6-0.65             | 3.4                                                                             |
| $316L+BN+Y_2O_3$                       | 0.62-0.65            | 4.7                                                                             |
| $316L+BN+A\overline{l}_2O_3$           | 0.62-0.65            | 4.8                                                                             |

- Ceramic particles (Al<sub>2</sub>0<sub>3</sub> and Y<sub>2</sub>0<sub>3</sub>) and sintering activators (B<sub>2</sub>Cr, BN) improved wear resistance
- Ceramic particles limited plastic deformation while sintering activators decreased porosity
- □ Friction coefficient did not vary substantially (0.6 and 0.7)
- "Friction-induced martensite" (debris)





### **Oxidation resistance of sintered stainless steels** (Bautista et al., 2003)



| Sintered stainless steels | $k ({ m g}^2{ m cm}^{-4}{ m s}^{-1})$ |         |  |  |
|---------------------------|---------------------------------------|---------|--|--|
|                           | 600 °C                                | 800 °C  |  |  |
| 316L                      | -                                     | 1.4E-10 |  |  |
| 304L                      | 2.4E–11                               | 8.1E-11 |  |  |
| 304L + Yttria             | 2.4E–11                               | 3.6E-10 |  |  |
| 434L                      | 4.0E–12                               | 2.5E-12 |  |  |





### Sintered Austenitic Stainless Steel – recent results

- Friction and wear
- High-temperature oxidation

Effect of boron and yttria additions

#### <u>Team</u>

Profa. M. Cristina Moré Farias

Postgraduate students Collaborators professors





- Serafini, F.L., Peruzzo, M., Krindges, I., Ordoñez, M.F.C., Rodrigues, D., Souza, R.M., Farias, M.C.M. (2019) *Materials Characterization*, 152, pp. 253-264.
- Peruzzo, M., Serafini, F.L., Ordoñez, M.F.C., Souza,
   R.M., Farias, M.C.M. (2019) *Wear*, 422-423, pp. 108-118.
- Peruzzo, M., Beux, T.D., Ordoñez, M.F.C., Souza, R.M., Farias, M.C.M. (2017) *Corrosion Science*, 129, pp. 26-37.
- Serafini, F. L. ; Peruzzo, M. ; Beux, T. D. ; Ordoñez, M.F.C. ; Dotta, A. L. B. ; Souza, R.M. ; Farias, M.C.M. In: 6th World Tribology Congress, WTC2017, Beijing. 6th World Tribology Congress, WTC2017, 2017.

# Further studies for P/M ASSs and their composites

- Friction and wear at high-temperature
- Tribocorrosion behavior

🎐 Moqueca Tribológica V.04, Vitória - ES, 2020

# P/M processing of ASS 316L



BRATS - Sintered Filters Special Metallic Powders (Cajamar, Sao Paulo, Brazil)



mcmfarias@ucs.br



Moqueca Tribológica V.04, Vitória - ES, 2020

### **Initial characterization of the sintered ASS 316L samples**







### **Tribological characterization of the sintered ASS 316L samples**





mcmfarias@ucs.br

br Moqueca Tribológica V.04, Vitória - ES, 2020

## **Thermal analysis**





mcmfarias@ucs.br

ıcs.br 🗾

Moqueca Tribológica V.04, Vitória - ES, 2020

### **Microstructure**





Microstructure of the B-free and B-containing sintered samples

- \* Porosity
- Austenitic grains
- Phases at the grain boundaries

Peruzzo et al. (2019) Wear, 422-423, pp. 108-118.







### **Porosity analysis**



| Sample   | Porosity<br>(%) | Pore size,<br>D <sub>90</sub> (μm) | Circularity<br>index, C <sub>I</sub> |  |  |
|----------|-----------------|------------------------------------|--------------------------------------|--|--|
| 316L     | 12.89           | 14.51                              | 0.4                                  |  |  |
| 316L-06B | 5.66            | 20.51                              | 0.8                                  |  |  |
| 316-08B  | 7.7             | 26.17                              | 0.8                                  |  |  |

- Irregular and interconnected pores were formed for the boron-free sample
- Nearly circular and isolated pores were developed in the boron-containing samples

Serafini, F.L. et al. (2019) Materials Characterization, 152, pp. 253-264.





### Microstructure



Serafini, F.L. et al. (2019) Materials Characterization, 152, pp. 253-264.



### **Microstructure – EDS mapping**



Serafini, F.L. et al. (2019) Materials Characterization, 152, pp. 253-264.





### **Microstructure – EDS line**

Serafini, F.L. et al. (2019) Materials Characterization, 152, pp. 253-264.



#### Line 1 – Continuous dark-grey phase, Cr-rich boride

Orthorhombic, Fe<sub>1.1</sub>Cr<sub>0.9</sub>B<sub>0.9</sub>

#### Line 2 – Continuous light-gray phase, Cr- and Mo-rich boride

Cubic, Cr<sub>23</sub>(B<sub>1.5</sub>C<sub>4.5</sub>)

#### Line 3 – Discontinuous phase, Mo-rich boride

Tetragonal, Cr<sub>1.75</sub>Mo<sub>0.25</sub>B



UNIVERSIDADE DE CAXIAS DO SUL

# **Crystalline phases**

| Sample    | γ-Fe   | M <sub>23</sub> C <sub>6</sub> | M <sub>23</sub> (B,C) <sub>6</sub> | Fe <sub>1.1</sub> Cr <sub>0.9</sub> B <sub>0.9</sub> | Cr <sub>1.75</sub> Mo <sub>0.25</sub> B |
|-----------|--------|--------------------------------|------------------------------------|------------------------------------------------------|-----------------------------------------|
|           | Cubic  | Cubic                          | Cubic                              | Orthorhombic                                         | Tetragonal                              |
| 316L      | 95.47% | 4.53%                          |                                    |                                                      |                                         |
| 316L-0.6B | 78.27% |                                | 6.39%                              | 9.40%                                                | 5.94%                                   |
| 316L-0.8B | 66.21% |                                | 15.46%                             | 9.40%                                                | 7.91%                                   |



Serafini, F.L. et al. (2019) Materials Characterization, 152, pp. 253-264.



mcmfarias@ucs.br

Moqueca Tribológica V.04, Vitória - ES, 2020

# **Density and hardness**

|          | Donaitu              |                     | Instrumented indentation hardness (GPa) |                              |                                  |  |  |
|----------|----------------------|---------------------|-----------------------------------------|------------------------------|----------------------------------|--|--|
| Sample   | (g/cm <sup>3</sup> ) | (HV <sub>10</sub> ) | Austenite                               | Dark-grey<br>boride, Cr-rich | Discontinuous<br>boride, Mo-rich |  |  |
| 316L     | 7.13 ± 0.04          | 89 ± 3              | $1.6 \pm 0.1$                           | -                            | -                                |  |  |
| 316L-06B | 7.37 ± 0.01          | 159 ± 13            | $1.9 \pm 0.1$                           | 20.5 ± 1.3                   | 4.3 ± 0.7                        |  |  |
| 316L-08B | 7.35 ± 0.01          | 174 ± 7             | $1.9 \pm 0.1$                           | 22.9 ± 2.1                   | 5.0 ± 0.8                        |  |  |

Boron increases the hardness austenitic matrix and creates a network of hard borides along the austenitic grain boundaries

Serafini, F.L. et al. (2019) Materials Characterization, 152, pp. 253-264.







## **Reciprocating sliding wear**



#### Boron addition

- Narrower and shallower wear tracks
- Improved wear resistance (less material removal) that can be related to
  - Rounded pores (stress concentration regions)
  - Hard borides (less plastic deformation)

Peruzzo et al. (2019) Wear, 422-423, pp. 108-118.







### **Friction behavior**



Peruzzo et al. (2019) Wear, 422-423, pp. 108-118.



#### Worn surfaces

**316L** 



#### 316L-08B



#### Adhesive wear plastic deformation, material transferring and abrasion grooves

Peruzzo et al. (2019) Wear, 422-423, pp. 108-118.



mcmfarias@ucs.br



Moqueca Tribológica V.04, Vitória - ES, 2020

#### Worn surfaces



Peruzzo et al. (2019) Wear, 422-423, pp. 108-118.

#### Adhesive wear

- plastic deformation,
- material transferring and abrasion grooves

#### Oxidative wear by metallic

#### particle oxidation

transfer layer is a mixture of oxide and metallic particles) and composed of small clustered particles

I. Hutchings, P. Shipway, Tribology: Friction and Wear of Engineering Materials, 2017. F.H. Stott, Tribol. Int. 31 (1–3) (1998) 61–71.





#### **Wear particles**



#### Wear particles

plate and lamellar morphologies

same composition of transfer layer

Peruzzo et al. (2019) Wear, 422-423, pp. 108-118.





# Single-pass sliding test

316L-06B

(e)

316L



#### Single-pass sliding test

Evaluation of load carrying capability of each microstructural constituent (austenite matrix and boron-based precipitates)

Restrict the formation of wear particles, plastic deformation, straininduced martensitic transformation or oxidation of surface

- Plastic deformation and abrasion grooves in the austenite matrix
- Borides are free of any damage

Peruzzo et al. (2019) Wear, 422-423, pp. 108-118.



mcmfarias@ucs.br

Moqueca Tribológica V.04, Vitória - ES, 2020

# Single-pass sliding test

Peruzzo et al. (2019) Wear, 422-423, pp. 108-118.

| Material            | E (GPa)                        | $\nu^{\mathrm{b}}$ | H (GPa) <sup>a</sup> | $W_E/W_T^a$ | $E^*/H$ | $\sigma/\beta^{c}$ | ψ    |                              |
|---------------------|--------------------------------|--------------------|----------------------|-------------|---------|--------------------|------|------------------------------|
| Austenite<br>matrix | 195.30 ±<br>12.60 <sup>a</sup> | 0.30               | $1.92 \pm 0.08$      | 0.15        | 82.59   | $2 \times 10^{-4}$ | 1.18 | "Plastic contact"<br>ψ > 0.6 |
| Cr-rich<br>boride   | 443.62 ±<br>18.74 <sup>a</sup> | 0.20               | 20.52 ±<br>1.27      | 0.39        | 13.21   | $2 \times 10^{-4}$ | 0.18 | "Elastic contact"<br>ψ < 0.6 |
|                     |                                |                    |                      |             | 1       |                    |      | ł                            |

Plasticity index

 $\psi = \left(\frac{E^*}{H}\right) \left(\frac{\sigma}{\beta}\right)^{1/2}$ 

Energy ratio

$$rac{W_E}{W_T} = \lambda rac{H}{E^*}$$

| Material | Dynamic<br>hardness (MPa) | Friction coefficient |
|----------|---------------------------|----------------------|
| 316L     | 510                       | 0.22                 |
| 316L-06B | 1244                      | 0.10                 |

#### Borides have also load carrying capacity

J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. A: Math. Phys. Eng. Sci. 295 (1442) (1966) 300-319.







#### **High-temperature cyclic oxidation** at 900°C



- Boron to the 316L steel strongly improves the cyclic oxidation resistance
- Rounded and smaller pores contribute with the reduction in the porosity and the active area for oxidation, (this tendency is more pronounced in the boron-containing steel
- Yttria addition also improves the oxidation resistance of the steel in a lower ratio than boron

Peruzzo, M., et al. (2017) Corrosion Science, 129, pp. 26-37.





### **ASS obtained by SPS – recent results**





Serafini, F.L. et al. (to be published).



mcmfarias@ucs.br



Moqueca Tribológica V.04, Vitória - ES, 2020

### **ASS obtained by SPS – recent results**



Serafini, F.L. et al. (to be published).



mcmfarias@ucs.br

Moqueca Tribológica V.04, Vitória - ES, 2020

|     | Base material                                                                  | Additive<br>type                                   | Additive<br>amount<br>(wt%) | Density<br>(g/cm³) | Hardness                                              | k<br>mm³/Nm                                      | Sintering parameters            |
|-----|--------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|--------------------|-------------------------------------------------------|--------------------------------------------------|---------------------------------|
| [1] | 6.90 g/cm <sup>3</sup><br>110 HV5                                              | Y <sub>2</sub> O <sub>3</sub>                      | 1 – 5                       | 6.95 – 6.92        | 127 – 155                                             | •••                                              | 1300 °C, 1 h,<br>Hydrogen       |
| [2] | 6.90 g/cm <sup>3</sup><br>110 HV5                                              | $Y_2O_3$<br>Cu<br>Cu-Sn<br>Fe <sub>3</sub> P<br>Si | 3<br>1-3<br>1-2<br>1-5      | •••                | 122<br>104 - 100<br>135 - 127<br>171 - 218<br>85 - 80 | •••                                              | 1300 °C, 1 h,<br>Hydrogen       |
| [3] | 6.90 g/cm <sup>3</sup><br>38 HRB<br>6.1x 10 <sup>-13</sup> mm <sup>3</sup> /Nm | $Y_2O_3-B_2Cr$<br>$Y_2O_3-BN$                      | 5-2<br>5-1                  | 7.35<br>7.05       | 74<br>63                                              | 3.5x 10 <sup>-13</sup><br>4.7x 10 <sup>-13</sup> | 1250 °C,<br>30 min,<br>Vacuum   |
| [4] | 6.5 g/cm <sup>3</sup>                                                          | Y <sub>2</sub> O <sub>3</sub>                      | 10                          | 6.18               | •••                                                   | •••                                              | 1250 °C,<br>60 min,<br>Hydrogen |
| [5] | 6.61 g/cm <sup>3</sup><br>82 HV5                                               | Y <sub>2</sub> O <sub>3</sub>                      | 3 – 8                       | 6.35 - 6.08        | 118 – 125                                             | •••                                              | 1350 °C, 1 h,<br>Hydrogen       |

[1] S. Lal, G.S. Upadhyaya. J. Mater. Sci. 24 (9) (1989) 3069–3075.

[2] S. Lal, G.S. Upadhyaya. Sol. Sta. Phen. 8-9 (1990) 361–368.

[3] M. Vardavoulias, et al. Tribol. Int. 29 (6) (1996) 499–506.

[4] J. Shankar, et al. Corros. Sci. 46 (2004) 487–498.

[5] A. Raja Annamalai et al. Corros. Eng. Sci. Technol. 50 (2015) 91–102.

#### Data compilation Properties of P/M ASS





#### **Data compilation**

# Effect of additives in density of P/M ASS



#### Sintered Austenitic Stainless Steel





#### **Final remarks**

- Boron can be used either elemental or in compound (FeB, Fe<sub>2</sub>B, NiB and Cr<sub>2</sub>B) as an additive in ironbased systems and stainless steels
- Boron acts as a sintering enhancer, and sintering temperature can be reduced to about 1240 °C
- The addition of boron in elemental form results in the good properties and structure for stainless steel
- Boron addition up to 0.8 wt% for 316L stainless steel powders increases density, mechanical properties, corrosion, and wear resistance. Nearly full densification was obtained with enough eutectic phase formation
- Yttria addition improves high-temperature oxidation of P/M ASS.
- The resultant parts might be used in applications where wear and high-temperature resistance are desired



## Acknowledgements

- Me. Michell Felipe Cano Ordoñez
- Me. Francisco Serafini Lanferdini
- Me. Marcele Peruzzo
- Me. Israel Krindges
- Dra. Aline Luísa Bandeira Dotta
- Enga. Tanara Dariva Beux
- Prof. Dr. Otávio Bianchi
- Profa, Dra, Isabel Fernanda Machado
- Prof. Dr. Amilton Sinatora
- Prof. Dr. Roberto Martins de Souza



**F**APFRGS Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul



GOVERNO DO ESTADO DO **RIO GRANDE DO SUL** SECRETARIA DE DESENVOLVIMENTO







mcmfarias@ucs.br

Moqueca Tribológica V.04, Vitória - ES, 2020

oborotó